Notes on using this spreadsheet: Enter values in the cells that have blue text. Cells with black text are calculated. The area with yellow background is for power brakes only. Understand the limitations and interpret results with care. For example, there is no way to put a figure on the fluid displacement required to take up slop and flex in the system.

STEP 1 - Install 4-wheel discs

STEP 2 - SELECT ROTOR.

Front Rotor Diameter (in.)	11.85
Rear Rotor Diameter (in.)	11.22
Front Rotor Weight (lbs.)	19.1
Rear Rotor Weight (lbs.)	12
STEP 3 - Check Thermal Capacity	
Weight of vehicle (lbs.)	6750
Max speed of vehicle (mph)	80
Kinetic Energy at max speed (ft. lbs.)	1,444,816
Kinetic Energy at stop (ft. lbs.)	0
Kinetic Energy Change (ft. lbs.)	1,444,816
Temperature Rise (*F)	299
Starting Temperature (*F)	<mark>100</mark>
Brake Temp after stop (*F)	399 must not > 1000*F
STEP 4 - Select Calliper	
Number of callipers (each front wheel) Number of callipers (each rear wheel) Number of pistons (each front caliper) Number of pistons (each rear caliper) Calliper Design (front callipers) Calliper Design (rear callipers) Piston diameter (front) (in.) Piston diameter (rear) (in.)	1 2 1 2 1 = fixed, 2 = floating 2 1 = fixed, 2 = floating 2 1.88

Actual Piston Area (each front calliper) Actual Piston Area (each rear calliper) 6.28 This equation can be replaced with an area value if callipers have multiple pistons of unequal diameters 2.774504 This equation can be replaced with an area value if callipers have multiple pistons of unequal diameters

Total Effective Piston Area (front)

Total Effective Piston Area (rear)	5.549008
STEP 5 - Determine Brake Torque Required	
Rolling Radius of Tire (in.) Tire Grip	161 Use 1.0 unless calculated otherwise
STEP 5a - Front	
Horizontal distance from front axle to C of G (in.) Wheelbase (in.) Vertical Height of vehicle's C of G (in.)	 55 C of G = centre of gravity 109 34 measured vertically from ground
Vertical Force on Both front Tires (lbs) Friction Force on Front Tire (lbs)	5,450 2,725
Brake Torque Required - each front wheel (in. lbs.)	43,596
STEP 5b - Rear	
Vertical Force on both rear tires (lbs) Friction Force on Rear Tire (lbs)	1,300 650
Brake Torque Required - each rear wheel (in. lbs.)	10,404
Brake Balance Front Rear	81% 19%
STEP 6 - Calculate Requird Hydraulic Pressure (psi)	
Front Effective Rotor Radius (in) Coefficient of friction between pad and rotor Hydraulic pressure required (front) (psi)	5.3 0.46 use 0.3, manufacturer's specs, or estimate derived from the pad's DOT edge code 1424
Rear Effective Rotor Radius (in) Coefficient of friction between pad and rotor Hydraulic pressure required (rear) (psi)	 5.1 0.42 use 0.3 unless otherwise specified by pad manufacturer 875
Max System Hydraulic Pressure Required	1,424 Hydraulic pressure required, front or rear, whichever is greatest
STEP 7 - Pedal Effort Desired (lbs)	50 Driver's pedal effort at maximim braking - normally 50-75 lbs.
STEP 9a - Pedal Ratio	4 Pedal pivot to footpad distance divided by pivot to pushrod distance

STEP 9b - Calculate Manual MC Pushrod Force

Manual Pushrod Force (lbs)	200 pedal effort times pedal ratio
STEP 9c - Calculate MC size required (manual)	
Area of MC piston required (sq. in.) MC Bore required (diameter) (in.)	0.1405 0.4230
STEP 9d - Insert actual MC size and calculate pressure	
Actual MC Size (piston diameter) (in.) Actual MC piston area	1.0625 With due consideration to displacement required for acceptable pedal travel. Min 1" for 4-wheel discs. 0.8862
Actual pressure produced	226 If value is red (less than B88): Increase pedal ratio, rotor effective radius, calliper piston size or add power booster
Hydraulic Ratio - Front Hydraulic Ratio - Rear	14 :1 6 :1
STEP 9e - Add Power Booster (if required)	
Booster Multplication	7 Use value from 2 to 5
STEP 9f - Calculate Power MC Pushrod Force	
Power Pushrod Force (lbs)	1,400 Pedal effort times pedal ratio times booster multiplication
STEP 9g - Calculate MC size required (Power)	
Area of MC piston required (sq. in.) MC Bore required (diameter) (in)	0.9833 1.1192
STEP 9h - Insert actual MC size and calculate pressure	
Actual MC Size (piston diameter) (in.)	1.0625 With due consideration to displacement required for acceptable pedal travel
Actual MC piston area	0.8862
Actual pressure produced	1,580
Hydraulic Ratio - Front Hydraulic Ratio - Rear	14 :1 6 :1

Step 11 - Calculate Actual Max brake Torque (in. lbs.)

Max actual hydarulic pressure	1580 Enter the calculated value from either manual (B108) or power brakes (B132), above - or actual	
Front	obtained from pressure gauge installed inline with brake tubing.	
Required Brake Torque (front) (in. lbs)	43,596	
Calculate Clamping Force (front) (lbs)	19,845	
Calculate Brake Torque (front) (in. lbs.)	48,382	
Rear		
Required Brake Torque (rear) (in. lbs)	10,404	
Calculate Clamping Force (rear) (lbs)	8,767	
Calculate Brake Torque (rear) (in. lbs.)	18,780	